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Abstract

Chip-firing is a simple game played on a graph G, where chips are placed on the vertices
of G and distributed according to a simple rule. Certain stable configurations of chips
define the critical group of G, and the dynamics of chip-firing has found applications in
mathematics, physics, and economics. We study chip-firing and critical groups for signed
graphs, modeling a scenario that involves both cooperative and antagonistic interactions.
For this we apply the Guzmán-Klivans theory of chip-firing on general invertible matrices.

Signed Graphs and Their Laplacians

Definition 1. A signed graph Gϕ consists of a graph G = (V, E) equipped with a
signature ϕ : E → {+, −}. We let |G| denote underlying graph with all positive edges.

Definition 2. Let G = Gϕ be a signed graph with sink vertex q and non-sink vertices
{v1, . . . , vn}. The Laplacian L = LG is the n × n matrix given by D − A, where D is
the diagonal matrix with entries dii = deg(vi), and A is the adjacency matrix of G

aij =

1 ϕ({vi, vj}) = +
−1 ϕ({vi, vj}) = −

.

We let M denote the Laplacian of |G|.

The Critical Group

For a signed graph G = Gϕ, the critical group is defined as
K(G) = Zn/im(LG),

where LG is the signed Laplacian.
The order |K(G)| of the critical group is related to the number of generalized span-
ning trees of G (more precisely the number of bases of its underlying matroid).

Valid Configurations and Chip-Firing

Definition 3. A configuration on a signed graph Gϕ is a vector c⃗ =
c1 c2 . . . cn

 ∈ Zn
≥0

encoding the numbers of chips on each non-sink vertex v1, v2, . . . , vn.

We employ the Guzmán-Klivans theory of ‘chip-firing on invertible matrices’ [1]. The
Laplacians L = LGϕ

and M = L|G| define the cone of valid configurations.

S+ = {LM−1x⃗ : x⃗ ≥ 0⃗} ∩ Zn.

Figure 1: Valid Configurations of |G| Figure 2: Valid Configurations of Gϕ

Definition 4. Suppose G = Gϕ is a signed graph and c⃗ is a valid configuration. A vertex
vi ∈ V (G) can fire if

d⃗ = c⃗ − LGei

is valid. Similarly, a multiset of vertices {vi1, . . . , vik
} can multi-fire if

d⃗ = d⃗ − LG


k∑

j=1
eij



is valid.

Chip-Firing Example
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Special Configurations

Definition 5. A valid configuration c⃗ is critical if
•c⃗ is stable (no vertex can fire)
•there exists a b⃗ where each vertex can fire, and which stabilizes to c⃗.

Addition of critical configurations recovers the critical group K(G) of the signed graph
G = Gϕ. We let IK(G) denote the identity element.

Definition 6. A valid configuration is z-superstable if one cannot legally multi-fire a
cluster of sites, vi1, . . . , vik

.

From [1] we know that each equivalence class in Zn/im(L) has exactly one critical and
one z-superstable configuration.

Case Study: Cycles and Wheels

Figure 3: The Cycle Graph C6 Figure 4: The Wheel Graph W6

Critical Groups of Cycles and Wheels

Theorem 1. For any signed cycle (Cn)ϕ we have K((Cn)ϕ) ∼= Zn.

Theorem 2. [Duality between z-superstables and criticals]
Let −C2n+1 denote the odd cycle with only negative edges. For any n the set map

f : {z-superstable configurations} → {critical configurations}
given by c⃗ 7→ IK(−C2n+1) + c⃗ is a bijection.

Theorem 3. Let n ≥ 3. For any singed wheel Wn = (Wn)ϕ, we have:

K(Wn) =



Zfn
⊕ Z5fn

n is odd and Wn is unbalanced
Zfn

⊕ Z5fn
n is even and Wn is balanced

Zℓn
⊕ Zℓn

n is odd and Wn is balanced
Zℓn

⊕ Zℓn
n is even and Wn is unbalanced

where fn denotes the nth Fibonacci number and ℓn the nth Lucas number.

Stability Results

Theorem 4. [Checking for superstability and criticality]
Suppose (L, M) is a integral chip-firing pair, where L is an invertible matrix
and M is an M-matrix. Suppose c⃗ ∈ S+ is a valid configuration. Then c⃗ is z-
superstable if and only if ⌊ML−1c⃗⌋ is z-superstable for M . Similarly c⃗ is critical
if and only if ⌊ML−1c⃗⌋ is critical for M .

Theorem 5. [Bounding the criticals]
Suppose Gϕ is a signed graph where each non-sink vertex is adjacent to q, has
degree m, and is incident to m′ negative edges. Then, (m(2m′ + 1) − 1)⃗1 is the
maximum critical configuration.

Theorem 6. [Relating χ and z-superstables]
Suppose Gϕ is any connected signed graph. Then the set of χ-superstable config-
urations is the same as the set of z-superstable configurations.

Proposition 1. [Computing the Identity]
Let G = Gϕ be a signed graph with underlying unsigned graph |G|. Then the
identity of the critical group is given by

IK(G) = LM−1IK(|G|).

Further Questions

•Can we efficiently calculate the z-superstable configurations of a signed graph?
•Can we find a bijection between the z-superstables and critical configurations of a
graph, similar to that for unsigned graphs as in [2]?
•How does vertex switching on a signed graph affect critical configurations?
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